skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kylander‐Clark, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The study of active fault zones is fundamental to understanding both long‐term tectonics and short‐term earthquake behavior. Here, we integrate lidar‐enabled geomorphic‐geologic mapping and petrochronological analysis to reveal the slip‐history, tectonic evolution, and structure of the southern Alpine Fault in New Zealand. New petrographic, zircon U‐Pb and zircon trace‐element data from fault‐displaced basement units provides constraint on ∼70–90 km of right‐lateral displacement on the presently active strand of the southern Alpine Fault, which we infer is of Plio‐Quaternary age. This incremental displacement has accumulated while the offshore part of the fault has evolved within a distributed zone of plate boundary deformation. We hypothesize that pre‐existing faults in the continental crust of the Pacific Plate have been exploited as components of this distributed plate boundary system. Along the onshore southern Alpine Fault, detailed mapping of active fault traces reveals complexity in geomorphic fault expression. Our analysis suggests that the major geomorphic features of the southern Alpine Fault correspond to penetrative fault zone structures. We emphasize the region immediately south of the central‐southern section boundary, where a major extensional stepover and restraining bend are located along‐strike of each other. We infer that this geometry may reflect segmentation of the Alpine Fault between two distinct fault segments. The ends of these proposed segments meet near where several Holocene earthquake ruptures have terminated. Our new constraints on the evolution and structure of the southern Alpine Fault help contribute to improved characterization of the greatest onshore source of earthquake hazard in New Zealand. 
    more » « less
  2. Abstract An extensive system of NW striking faults constitutes a major tectonic feature of the Coastal Cordillera in northern Chile, but fundamental questions remain about timing and kinematics of these structures. We present new geologic mapping and geochronology that provide insight into the structural evolution and tectonic significance of the Taltal fault system (TFS). The TFS displaces the Early Cretaceous arc‐parallel Atacama fault system (AFS) with ~10.6 km cumulative offset across a ~15 km wide zone. Brittle fault data demonstrate that the TFS is vertical to steeply NE dipping with an average sinistral slip vector plunging 11° from the NW, compatible with E‐W shortening. Two late Early Cretaceous dikes cut the AFS but are cut by TFS faults, and synkinematic calcite on a TFS strand yielded a U‐Pb calcite date of 114.1 ± 7.0 Ma. These data demonstrate that the AFS was abandoned and deformation (re) initiated on the TFS between ~114–107 Ma, with continued slip after intrusion of the Tropezón (~110 Ma) and Librillo (106–101 Ma) plutonic complexes. Emplacement of a ~146 Ma rhyolite dike along the main Taltal fault and 141 ± 11 Ma calcite mineralization in the fault core suggests that a precursor structure influenced magma emplacement and fluid flow in the Late Jurassic/Early Cretaceous, supporting the hypothesis that the TFS reactivated long‐lived inherited crustal weaknesses. The Early Cretaceous shift from arc‐parallel shear to slip on the TFS and E‐W shortening shortly preceded migration of the magmatic arc and records a change in the Chilean margin subduction dynamics. 
    more » « less